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Adaptive lattice Boltzmann model for compressible flows: Viscous and conductive properties
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This paper presents an adaptive lattice Boltzmann model of higher accuracy for viscous compressible flows
with heat conduction. The proper heat conduction term in the energy equation is recovered by a modification
of the kinetic energy transported by particles. The accuracy of the model is improved by introducing a term of
fluctuating velocity in the collision-invariant vector. The Navier-Stokes equations are derived by the Chapman-
Enskog method from the Bhatnagar-Gross-Krook Boltzmann equation. The advantage of an adaptive lattice
Boltzmann model over the standard ones is that the particle velocities are no longer constant, varying with the
mean velocity and internal energy. Therefore, the mean flow can have a high Mach number. To investigate the
viscous and conductive properties of the model, a one-dimensional flow with a sinusoidal velocity distribution
and Couette flow were simulated, showing good agreement with the analytical solutions. The simulation of an
oblique shock impinging on a solid wall has captured the complex feature of the interaction between the shock
and boundary layer.

PACS number~s!: 47.40.Nm, 51.20.1d, 47.15.Cb
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I. INTRODUCTION

The lattice Boltzmann~LB! method as a relatively new
numerical scheme has recently achieved considerable
cess in simulating fluid flows and associated transport p
nomena. A variety of LB models for different physical pro
lems, such as single component hydrodynamics, multiph
and multicomponent fluids, magnetohydrodynami
reaction-diffusion systems, flows through porous media,
other complex systems have been established@1#. The LB
method has demonstrated a significant potential and b
applicability with numerous computational advantages, s
as the parallel algorithm and simplicity of programmin
There was one recent attempt to overcome the low M
number constraint, so that the LB method may simulate
personic flows with a shock wave@2,3#.

Historically, the LB method originated from a Boolea
model known as lattice gas automata~LGA! @4,5#. The stan-
dard LGA models impose, for the sake of computational
ficiency, a Boolean constraint which restricts the number
particles with a given velocity at a site to be zero or 1. T
local equilibrium of the mean population of particles is d
scribed by the Fermi-Dirac statistics. As a result, LGA mo
els suffer from statistical noise and non-Galilean invarian
These difficulties have led to the development of LB mod
@6–8#. In the LB method real numbers represent the lo
ensemble-averaged particle distribution functions. A sim
Bhatnagar-Gross-Krook~BGK! collision operator is applied
@6,7#. Space and time are discrete as in the LGA method.
particle velocities belong to a finite set. Consequently
macroscopic velocity is limited, and, in turn, the general L
method suffers from the constraint of small Mach number
the past years, the gas-kinetic theory@9,10# and the discrete-
velocity model@11# successfully simulated the compressib
Euler equation. The finite volume method was employed
solve the Boltzmann equations. The discontinuities w
well captured. However, due to the restraint mention
above, the standard LB method has a great difficulty in sim
lating compressible Euler flows at high Mach number. E
PRE 611063-651X/2000/61~3!/2645~9!/$15.00
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forts have been made to solve this problem. Alexanderet al.
@12# attempted to decrease the sound speed to augmen
Mach number. Qian and Orszag@13# studied the nonlinear
deviation of the LB model in a compressible regime, a
presented a numerical simulation of a shock profile. Yan a
co-workers@3,14# proposed a compressible LB model for th
Euler system, and successfully simulated the Sod shock-
problem in which a membrane separates a long tube w
high-pressure and high-density fluid in one side and lo
pressure and low-density fluid in the other side, and
membrane blasts at initial time@24#. Recently, we proposed
locally adaptive semidiscrete LB model@2#. The particle ve-
locity set is chosen according to the fluid local velocity a
internal energy. The fluid velocity is no longer limited by th
particle velocity set. Consequently, the model is suitable
a wide range of Mach numbers. Simulations of the S
shock-tube problem and two-dimensional shock reflect
demonstrated the model’s capability for solving compre
ible Euler flows with shocks. The Navier-Stokes equatio
were derived by the Chapman-Enskog method. However,
heat conduction term in the energy equation was not cle
formulated.

The objectives of the present paper are to establis
modified semidiscrete adaptive LB model to recover the c
rect heat conduction term in the energy equation, to study
viscous term in the Navier-Stokes equations, and to impr
the accuracy. This paper is organized as follows. Sectio
describes a LB model with adaptive particle velocities fir
then derives general macroscopic conservation equat
from the Boltzmann equations by the Chapman-Ensk
method, defines the equilibrium distribution function to o
tain the Navier-Stokes equations, and finally eliminates
discretion errors. Section III is about the numerical resu
Finally, some concluding remarks will be presented.

II. SEMIDISCRETE ADAPTIVE LB MODEL

A. Basic equations

Let r be the particle ‘‘migrating velocity,’’ transporting a
particle from a node to its neighbor node at a distancerDt
2645 ©2000 The American Physical Society
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2646 PRE 61CHENGHAI SUN
during the discrete timeDt. The migrating velocity set$r% is
discrete because the nodes of the lattice are discrete. Sup
that the particle transports the massm, momentumj, and
energyz to the neighbor node at a distancerDt, wherej
PD1 , D1 is a bounded domain inR3 ~or in R2 for two-
dimensional models! and rPD1 ; mPD0 , zPD0 , D0 is a
bounded domain inR. DefineD5D03D13D0. Obviously,
m, j, andz can vary continuously. In the standard LB mod
space, time, and the particle velocity are all discrete; the
fore, m, j, andz must be discrete and take the values 1,r ,
and 1

2 r2, respectively. The objective of introducing such
semidiscrete velocity LB model is to increase the accurac
the model.

Let x be an arbitrary node of a lattice;xtf~x,r ,m,j,z,t! is
the density distribution function for the particle with the m
grating velocityr , moving toxtx1rDt during Dt, and trans-
porting the massm, momentumj, and energyz. The con-
served total mass, momentum, and energy are defined a

r[(
r
E

D
m f~x,r ,m,j,z,t !dmdjdz, ~1!

rv[(
r
E

D
jf ~x,r ,m,j,z,t !dmdjdz, ~2!

rE[(
r
E

D
z f ~x,r ,m,j,z,t !dmdjdz, ~3!

wheredj5dj1dj2dj3. Define

h[@m,j,z#, ~4!

f ~x,r ,h,t ![ f ~x,r ,m,j,z,t !, ~5!

Y[@r,rv,rE#. ~6!

Equations~1!, ~2!, and~3! can be written in a compact form

Y5(
r
E

D
hf ~x,r ,h,t !dh, ~7!

wheredh5dmdjdz.
In LB models, the Boltzmann equation is written as

f ~x1rDt,r ,h,t1Dt !2 f ~x,r ,h,t !5V, ~8!

where

V52
1

t
@ f ~x,r ,h,t !2 f eq~x,r ,h,t !#, ~9!

and f eq(x,r ,h,t) is the equilibrium distribution depending o
the total mass, momentum, and energy. Because the dis
migrating velocity set$r% is large, andh can vary continu-
ously, the Boltzmann equation~8!, in general, is hard to
solve. In fact, Eq.~8! is only used for theoretical analysis
The technique for numerical simulation will be discussed
Sec. III.

In the following, we utilize the Chapman-Enskog expa
sion of the solution of Eq.~8! @2,15,16# to derive the macro-
scopic conservation equations. We chooseDt5eT, whereT
is a reference time scale ande a typical small parameter. W
are then looking for a solution of Eq.~8! as an asymptotic
expansion of the forms
ose

,
e-

f

ete

-

f 5 (
n50

`

enf (n), ~10!

]Y

]t
5 (

n50

`

enF(n), ~11!

where f (n) and F(n) depend only onY and its successive
gradients.f (0)5 f eq is completely determined by the macro
scopic variablesr, rv, andrE, and verifies

Y5(
r
E

D
hf eq~x,r ,h,t !dh. ~12!

Considering relations~7!, ~12!, ~10!, and~9! we have

(
r
E

D
hf (n)dh50, ;n>1, ~13!

(
r
E

D
hVdh50. ~14!

A vector h verifying Eq. ~14! is called the collision invari-
ant.

We Taylor expand the left-hand side of Eq.~8!. Then, by
identifying the first order terms ofe, we can determinef (1),
and, considering Eqs.~13! and~14!, we obtainF(0) andF(1):

f (1)52tTS“ f eq
•r1

] f eq

]Y
•F(0)D ,

F(0)52div (
r
E

D
r f eqhdh,

F(1)52div (
r
E

D
H f (1)r1

T

2 Fdiv~ f eqrr !1
] f eq

]Y
•F(0)r G J

3hdh.

The operators div and“ take effect on variablex. The
variablesr , j, and z are independent ofx. Therefore, they
can be treated as constant for div and“. Up to order 1 Eq.
~11! is written as

]Y

]t
52div (

r
E

D
f eqrhdh2eTS 1

2
2t Ddiv

3Fdiv(
r
E

D
f eqrr hdh1(

r
E

D

] f eq

]Y
•F(0)rhdhG

1O~e2!. ~15!

This is the macroscopic conservation equation. It depend
the distribution off eq. If the equilibrium distribution is prop-
erly determined, it may become the Navier-Stokes equat

B. Equilibrium distributions

On a uniform lattice, let us consider the symmetric vec
set $cj n8 ; j 51, . . . ,bn% connecting a node to its equal dis
tance neighbor nodes, wherebn is the number of vector di-
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PRE 61 2647ADAPTIVE LATTICE BOLTZMANN MODEL FOR . . .
rections. For a hexagonal lattice we choosebn56, andn51
and 2. The module ofcj n8 is cn8 . In the standard LB method
the constant vectorscj n8 are the particle velocities. The bas
idea of what we call an ‘‘adaptive LB model’’ is to supe
impose the fluid velocityv, which is approximated by
vk (k51,2,3) ~see Fig. 1!, on the symmetric velocitycj n8 .
Let x be an arbitrary node;v is the fluid velocity at this node
and v1 , v2, and v3 are the vectors from the nodex to the
apexes of the triangle containing the velocity vectorv. We
introduce the particle velocitiescj nk ,c̄j n and the fluctuating
velocitiesvk8 (k51,2,3):

cj nk5vk1cj n8 , ~16!

c̄j n5v1cj n8 , ~17!

vk5v1vk8 . ~18!

In standard LB models, the particle velocities are co
stant, therefore, the mean velocity~i.e., the fluid velocity! is
limited. In the present model, the particle velocities a
adapted to the mean velocity, which is then rid of the co
straint of the particle velocities. For high speed flow the flu
tuating velocitiesvk8 is small.

In the following, we will determine the equilibrium dis
tribution f eq. We hope the model is as simple as possi
under the condition that the correct macroscopic equat
~Navier-Stokes equations! can be obtained. We concentra
the particles atr5cj nk , m5mj nk , j5jj nk and z5z j nk .
mj nk , jj nk , andz j nk are determined by the macroscopic va
ablesr, v, andE. For r5cj nk , we define

f j nk
eq ~x,h,t ![ f eq~x,cj nk ,h,t !, ~19!

and for other r ’s we set f eq(x,r ,h,t)50. We suppose
f j nk

eq (x,h,t) to have the form

f j nk
eq ~x,h,t !5dnkd~m2mj nk!d~j2jj nk!d~z2z j nk!,

~20!

where d(j) is the d function. d(j)50 for jÞ0;
*g(j)d(j)dj5g(0). d(z)50 for zÞ0; *g(z)d(z)dz
5g(0). Equation~15! becomes

FIG. 1. Particle velocities.
-

-
-

e
s

]Y

]t
52div(

k,n, j
H dnkcj nkhj nk1eTS 1

2
2t D

3Fdiv~dnkcj nkcj nkhj nk!1F(0)
•

]

]Y
~dnkcj nkhj nk!G J

1O~e2!, ~21!

where O(e2) is the error term derived in the Chapma
Enskog expansion, and

hj nk5@mj nk ,jj nk ,z j nk#. ~22!

After substitutingf j nk
eq into it, Eq. ~12! becomes

Y5 (
k,n, j

dnkhj nk . ~23!

In Ref. @2#, in order to obtain an arbitrary special heat ra
g, we introduced the particle potential energyF and as-
sumed that the total energy of a particle consists of kine
energy and potential energy, i.e.,z j nk 5 1

2 c̄j n
2 1F5 1

2 (v2

12cj n8 •v1cn8
2)1F. However, because of the fluctuating k

netic energy1
2 cn8

2, the heat conduction term in the energ
equation could not be properly formulated. To overcome t
difficulty, now we replacecn8

2 by a mean valuec̄82, i.e.,

z j nk5
1

2
~v212cj n8 •v1 c̄82!1F, ~24!

where

c̄825
1

r (
k,n

mbndnkcn8
2. ~25!

In Ref. @2#, jj nk was chosen asjj nk5 c̄j n . However, the
Navier-Stokes equation had discretion error termsvk8vk8 .
These terms can be eliminated if a correction term is ad
to mj nk , jj nk , and z j nk . For comparison we describe tw
models: model I without correction and model II with co
rection. Model I:

mj nk
I 51, ~26!

j j nk
I 5 c̄j n , ~27!

z j nk
I 5

1

2
~v212cj n8 •v1 c̄82!1F, ~28!

hj nk
I 5@mj nk

I ,j j nk
I ,z j nk

I #. ~29!

Model II:

mj nk
II 5mj nk

I 2x j nk , ~30!

j j nk
II 5j j nk

I 2x j nkv, ~31!

z j nk
II 5z j nk

I 2x j nkF1

2
~v21 c̄82!1FG , ~32!

hj nk
II 5@mj nk

II ,j j nk
II ,z j nk

II #, ~33!
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whereD is the space dimension and

x j nk5
D

2cn8
2
~cj n8 •vk8!. ~34!

In order to increase the accuracy it is assumed thark
satisfy the equations

r5 (
k51

3

rk , ~35!

rv5 (
k51

3

rkvk , ~36!

whererk5(nbndnk . For a givenr andrv it can be proved
that Eqs.~35! and ~36! have unique non-negative solution
for rk ~see Fig. 1!. Equations~35! and ~36! permit us to
write.

(
k

rkvk850. ~37!

Thanks to Eq.~37!, the first order ofvk8 in the conservation
equations disappears.

Substitutinghj nk
I and hj nk

II into Eq. ~23! that has to be
satisfied, one has the same equations for these two mod

r5(
k,n

bndnk5 (
k51

3

rk , ~38!

rE5
1

2
rv21(

k,n

1

2
bndnkcn8

21rF, ~39!

The second component of Eq.~23! is automatically satisfied
as long asdnk satisfies Eq.~38! which is identical to Eq.~35!.
This expression forrE is the same as that of Ref.@2#, al-
though the vectorhj nk is different. We introduce the densit
portion ak[rk /r, and supposednk to have the form

dnk5akdn , ~40!

wheredn5(kdnk will be determined by the density and th
pressure~or internal energy!.

A perfect gas with a specific heat ratiog satisfiesp5(g
21)re, wheree5E2 1

2 v2 is the internal energy. The pres
surep has the form

p5(
n

bndn

1

D
cn8

2. ~41!

In the case wherecn8 have two levels (n51 and 2) one
can determined1 ,d2, andF by Eqs.~35!, ~39! and ~41!:

d15r
c28

22D~g21!e

b1~c28
22c18

2!
,

d25r
D~g21!e2c18

2

b2~c28
22c18

2!
,

ls:

F5F12
D

2
~g21!Ge.

In order to ensure the positivity ofd1 andd2 , c18 andc28
are required to satisfyc18

2,D(g21)e,c28
2. However,c18

andc28 are not completely determined. In practice,c18 is set to
be the integer part ofAD(g21)e, and c285c1811. For a
two-dimensional Boltzmann model without particle potent
energy the special heat ratiog is 2 @11#. From the relation
above it can be seen thatF50 wheng52, agreeing with
the standard LB models. Whene is small,c18 may be zero.
The correction terms in Eqs.~30!, ~31!, and~32! have to be
modified if c1850. In this case,x j nk in Eq. ~34! is defined as

x j 1k50, x j 2k5
d11d2

d2

D

2c28
2
~cj 28 •vk8!, if c1850.

~42!

Now, the equilibrium is completely determined. Consi
ering relations~16!, ~17!, ~18!, ~36!, and~37!, the continuity,
momentum and energy equations are derived for mode
and II after substitutinghj nk

I andhj nk
II into Eq. ~21!:

]r

]t
1div~rv!5div~B0!1O~e2!, ~43!

]rv

]t
1div~rvv!1“p

5div$m@“v1~“v!T2~g21!div vId#1B1%

1O~e2!, ~44!

]rE

]t
1div~pv1rEv!

5div$mv•@“v1~“v!T2~g21!div vId#%

1div$k“e2~g21!e“k1B2%1O~e2!,

~45!

where

m5k5eTS t2
1

2D(
n

bndn

1

D
cn8

2. ~46!

m andk are the viscosity and heat conductivity, respective
eT is the time step; andO(e2), the error terms derived in the
Chapman-Enskog expansion, are of higher order than
viscous term and heat conduction term in Eqs.~44! and~45!
~see Eq.~46!!. For model I,

B05eTS t2
1

2Ddiv(
k,n

bndnkvk8vk8 ,

B15eTS t2
1

2Ddiv(
k,n

bndnkvvk8vk8 ,

B25eTS t2
1

2Ddiv (
k,n

bndnkF1

2
~v21 c̄82 !1FGvk8vk8 ;
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TABLE I. Comparison between measured viscosities (n I for model I andn II for model II! and analytical
viscosity (na) for different e on 20034 lattice. Numbers in brackets represent powers of 10.

e 0.5 1.0 1.5 2.0 2.5 3.0

na 9.9691@25# 1.9938@24# 2.9907@24# 3.9876@24# 4.9845@24# 5.9815@24#

n I 1.1480@24# 2.1406@24# 3.2634@24# 4.1933@24# 5.1528@24# 6.1124@24#

n II 1.0063@24# 1.9997@24# 3.0715@24# 3.9802@24# 4.9695@24# 5.9610@24#

error I 15.15% 7.36% 9.12% 5.16% 3.38% 2.19%
error II 0.942% 0.296% 2.70% 0.186% 0.301% 0.343%
he
tio
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gy

di-
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The

l

and for model II we have

B05B15B250

due to the relation

(
k,n, j

dnkcj nkcj nk

D

2cn8
2
~cj n8 •vk8!

5 (
k,n, j

dnk

D

2cn8
2
~cj n8 cj n8 1cj n8 vk1vkcj n8 1vkvk!~cj n8 •vk8!

5(
k,n

bndnkvk8vk8 . ~47!

In Eq. ~45! the first term and the second term on t
right-hand side correspond, respectively to the dissipa
and the heat conduction. Since we replaced the fluctua
kinetic energycn8

2 in the collision-invariant vector by the

mean valuec̄82, we obtain the correct heat conduction ter
div(k“e), which was in the formD(nbndn@1/(2D)#cn8

4 in
Ref. @2#, whereD is the Laplace operator. For model I,B0 ,
B1, and B2 can be regarded as discretion errors; and
model II these errors are eliminated. Then Eqs.~43!, ~44!,
and ~45! become Navier-Stokes equations.

III. NUMERICAL SIMULATIONS

Whent51 the Boltzmann equation~8! becomes

f ~x1rDt,r ,h,t1Dt !5 f eq~x,r ,h,t !. ~48!

Since f eq depends only on fluid density, velocity, and inte
nal energy, the particle distributionf at t1Dt is also deter-
mined by them, independent of the particle distributionf at
time t. In this way, the need for computer memory and co
putation time is considerably reduced. In fact, during
numerical simulations, what we care about are the mass,
n
g

r

-
e
o-

mentum, and energy transported by the particles, and the
no need to store the particle distributionf. Due to the fact
that f eq50 for rÞcj nk , the mass, momentum, and ener
transported by the particles from a node tox1cj nkDt are
components of the vector

E
D

hf eq~x,cj nk ,h,t !dh5hj nkdnk . ~49!

The following simulations are carried out under the con
tion t51 andg51.4.

A. Viscosity comparison of the two models

Let us consider a special analytical solution of Eq.~44!.
Suppose“p50, u50, andv to be a function ofx. When
the variation of the viscositym is neglected, Eq.~44! be-
comes

]v
]t

5n
]2v

]x2
, ~50!

wheren5m/r. Equation~50! admits the following analytical
solution for the sinusoidal initial condition:

v~x,t !5b exp~2nt !sin~2px/L !. ~51!

The simulation was carried out on a hexagonal lattice
20034 nodes, andb is set to be 0.3. From solution~51!, we
have

ln@v~x,t !/v~x,0!#52nt. ~52!

When the simulation value of ln@v(x,t)/v(x,0)# is plotted ver-
sus t, a straight line is anticipated, and the slope is2n. In
this way, the viscosity of the models can be measured.
measured viscosities (n I for model I andn II for model II! are
compared with analyticalna @calculated by Eq.~46!# in Table
I for different e’s. Model II agrees well with the analytica
r

FIG. 2. ~a! Distribution of v for e50.5 at t
50, 3000, 6000, and 9000 on a lattice: 20034
~in x and y directions!. The dashed lines are fo
model I and the solid lines are for model II.~b!.
ln@v(t)/v(0)# vs t at x5L/4.
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FIG. 3. ~a! Distribution of v for e52.0 at t
50, 800, 1600, and 2400. The dashed lines
for model I, and the solid lines are for model I
~b! ln@v(t)/v(0)# vs t at x5L/4.
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values. Model I has a significant error from the analytic
values, and, the smallere is, the larger the error is. Th
reason for this is that the viscositym decreases withe; there-
fore, whene is small, the discretion errorB1 becomes more
important@see Eq.~44!#.

Figure 2~a! shows the profiles ofv ~for e50.5) at t50,
3000, 6000, and 9000. The dashed lines are for model I
the solid lines are for model II. In Fig. 2~b! the values of
ln@v(x,t)/v(x,0)# are plotted versust at x5L/4 for the two
models. They are approximately straight lines. The co
sponding viscosityn is 1.1480@24# for model I and
1.0063@24# for model II. The analyticaln is 9.9691@25#.

Figure 3~a! shows the profiles ofv ~for e52.0) at t50,
t5800, t51600, andt52400. The dashed lines are fo
model I and the solid lines are for model II. Figure 3~b!
shows the profiles of ln@v(x,t)/v(x,0)#. The difference be-
tween the two models are smaller than Fig. 2, becausee is
larger.

This example demonstrates that model II is more accu
than model I. In the following all the simulations have be
carried out by model II.

B. Couette flow

Couette flow provides a good test of the ability of a L
thermal model to describe viscous heat dissipation@17,18#.
With the bottom wall fixed and the top boundary moving
the speed ofU, the velocity profile is a straight line and th
temperature profile satisfies the following relations@17,18#
when the variation of the viscosity and heat conductivity c
be neglected:

T1ÞT0 :
T2T0

T12T0
5

y

H
1

Br

2

y

H S 12
y

H D , ~53!

T15T0 : T2T05
mU2

2k

y

H S 12
y

H D , ~54!
l

nd

-

te

t

n

whereT0 andT1 are the temperatures at the bottom and
boundaries, respectively;y is the distance from the bottom
boundary;H is the height of the channel; Br5Pr3Ec is the
Brinkman number; Pr5mcp /k is the Prandtl number; and
Ec5U2/cp(T12T0) is the Eckert number. The temperatu
is defined bye5cvT, andcv is set to 1.

We used the parametersr051, p050.25/1.4, andT0
5e05p0 /@(g21)r0#50.446, and the corresponding soun
speedcs5Agp/r50.5. The domain of computation include
8332 nodes~in x and y directions! and is normalized to 1
31. A periodical boundary condition is imposed in thex
direction.

Figure 4 shows the results forT15T0 ~i.e., Br50), U
50.25, 0.5, and 1.5 ~i.e., Mach number Ma
50.5, 1, and 3). Figure 4~a! compares the numerical an
analytical solutions of the normalized temperature. The so
line in Fig. 4~a! is the analytical solution given by Eq.~54!.
The numerical results agree well with analytical solution
Figure 4~b! shows the corresponding velocity profiles forU
50.25, 0.5, and 1.5, which are almost straight lines as
the analytical solutions.

Figure 5 shows the results forT15T010.05 and U
50.25, 0.5, 0.707, and 1, i.e., Mach number M
50.5, 1, 1.414, and 2, and Brinkman number Br51.25, 5,
10, and 20. From Fig. 5~a! we can see that the normalize
temperature profiles agree well with the analytical solutio
~the solid lines! given by Eq.~53!. Figure 5~b! shows the
corresponding velocity profiles forU50.25, 0.5, 0.707, and
1, which are again almost straight lines. This simulation w
also carried out for model I and the similar results we
obtained in Ref.@25#.

The standard LB model can simulate Couette flow at v
low Mach number 0.007;0.14 @17#. In order to increase the
Mach number, Chenet al. @17# proposed a complex ‘‘highe
order model’’ and obtained a good solution for Mach nu
bers up toM50.5. Figures 4 and 5 show that our solutio
are in good agreement with the analytical solutions, ev
when the flow is supersonic.
FIG. 4. ~a! Energy profiles in Couette flow
under different Mach numbers forT15T0. The
solid line is the analytical solution.~b! Corre-
sponding velocity profiles forU50.25, 0.5, and
1.5.
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FIG. 5. ~a! Energy profiles in Couette flow
under different Brinkman numbers forT1–T0

50.05. The solid lines are the analytical sol
tions. ~b! Corresponding velocity profiles forU
50.25, 0.5, 0.707, and 1.
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In the last simulation the temperature difference betw
the two plates is chosen quite small (dT5T12T050.05) for
two purposes: one is to obtain a higher Brinkman numb
and the other is to avoid the great variation in the viscos
and heat conductivity that results from the variation in te
perature, so that the simulation can be compared with
analytical solutions. Figure 6 shows the velocity profile w
U50.5 for different temperature differencesdT50.05, 1,
and 2. The deviations from the linear profile are visible
dT51 and 2, due to the great variation in temperature.

C. Shock reflection on an invisid wall

If we regard the viscous terms and the diffusion terms
the right-hand sides of Eqs.~44! and ~45! as the discretion
error, Eqs.~43!, ~44!, and ~45! become an inviscid Eule
system. In fact, the viscosity and diffusivity are of ordert
2 1

2 ) l 2/Dt, wherel is the unit length of the lattice andDt is
the unit time. We have performed a 29° shock reflection
t51 andg51.4.

The computational domain is a rectangle of length 3 a
height 1 divided into 3603140 nodes. Dirichlet conditions
are imposed on the left and upper boundaries, respectiv

~r,u,v,p!u(0,y,t)5~1.0, 0.532.9, 0.0, 0.25/1.4!,

~r,u,v,p!u(x,1,t)5~1.69997, 0.532.61934, 20.5

30.50633, 0.2531.52819!.

FIG. 6. Velocity profiles in Couette flow withU50.5 for dif-
ferent temperature differences,dT50.05, 1, and 2.
n
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The bottom boundary is a reflecting wall~see Fig. 7!,
corresponding to slip condition. Initially, the solution of th
entire domain is set to be that at the left boundary@19#. The
corresponding Mach number is 2.9. Figures 8~a! and 8~b!
show the pressure and density contours. The clear shoc
flection on the wall agrees well with the exact solution. It
noted that the shocks are much finer than those of our
vious results@2# (280380 grids! and than those of the ki
netic flux vector splitting methods (80320 @20# and 60
320 @21# grids! because the pressure is smaller~thereforem
and k are smaller! and the lattice is finer (3603140). The
main purpose of this simulation is to compare the sho
reflection on a slip wall with that on a nonslip wall present
in the next simulation.

D. Interaction between shock and boundary layer

In this example, a nonslip condition on the bottom w
was set. All the other conditions are the same as those in
III C, including the lattice condition, initial conditions, an
boundary conditions on entrance, exit, and upper wall.
the bottom wall, the following conditions were imposed:
nonslip wall,u50, v50; a zero pressure gradient iny di-
rection,]p/]y50; and a constant temperaturee5const. The
density was then determined by the state equation for per
gas.

Figures 9~a!, 9~b!, 9~c!, and 9~d! display the pressure
density contour,u contour, and streamlines. Figures 9~c! and
9~d! clearly show the boundary layer structure. Because
the great adverse pressure gradient crossing the shock
boundary layer separation occurs at aboutx51.6, where the
shock reaches the boundary layer; thereafter the boun
layer reattaches, corresponding to the curved streaml
which are convex in the direction of the wall. From Fig. 9~a!
we can see that the leading edge of the bottom wall distu
the uniform inlet flow, and induces a shock which tur
slightly to the right after traversing the oblique shock. T
impinging oblique shock is similar to that in Sec. III C befo
it reaches the boundary layer. However, the reflected pat
contains a system of compression and expansion waves,
which another fan of compression waves is formed. T
boundary thickness increases ahead of the point of arriva
the oblique shock. The boundary layer exhibits a large lo

FIG. 7. Particle reflection on a slip wall.
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thickening which leads to a separation. This situation agr
with that described in Ref.@22#.

IV. CONCLUSION

We have proposed an improved adaptive thermal
model for viscous compressible flows. The proper heat c
duction term in the energy equation is restored, and the
cretion error is eliminated. This model can handle flows o
a wide range of Mach numbers and capture shock jum
The adaptive nature of the particle velocities makes a
between the LB model and the discrete-velocity models@23#.
The BGK Boltzmann equation is the basic equation. T
Navier-Stokes equations were derived by the Chapm
Enskog method. One-dimensional simulations for sinuso
velocity distributions were performed in order to check t
viscosity. The velocity distributions were compared with t
analytical solution, and the measured viscosities were c
pared with the theoretical values. Because of the absenc
a discretion error, model II agrees better with the analyti
solution than model I. The numerical results for the Coue
flow agrees well with analytical solutions even when t
flow is supersonic. In the simulation for the reflection of
oblique shock impinging on a solid wall, the complex stru
ture of the shock wave, resulting from the interaction b
tween the shock and the boundary layer, was well captu
The total computation time is proportional to the total nu
ber of nodes. This model retains most of the advantage
the standard lattice Boltzmann method, such as paralle
of the method, and ease of programming. Another advan
of this model is that the boundary condition imposed for
macroscopic variables can be easily realized because the
culation at each iteration starts by the macroscopic variab
independent of the details of particle distributions. T

FIG. 8. Shock reflection on a slip wall. Grid size: 3603140.
Pressure~a! and density~b! contours att51000.
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model is as efficient as the standard LB models and c
sumes less computer memory, because we have taken ad
tage of the conditiont51 in the numerical simulations; oth
erwise, the simulations would require enormous compu
memory and time.
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FIG. 9. Interaction between shock and boundary layer on n
slip wall. ~a! Pressure,~b! density,~c! u contours, and~d! stream-
lines att51000. Grid size: 3603140.
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