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Adaptive lattice Boltzmann model for compressible flows: Viscous and conductive properties
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This paper presents an adaptive lattice Boltzmann model of higher accuracy for viscous compressible flows
with heat conduction. The proper heat conduction term in the energy equation is recovered by a modification
of the kinetic energy transported by particles. The accuracy of the model is improved by introducing a term of
fluctuating velocity in the collision-invariant vector. The Navier-Stokes equations are derived by the Chapman-
Enskog method from the Bhatnagar-Gross-Krook Boltzmann equation. The advantage of an adaptive lattice
Boltzmann model over the standard ones is that the particle velocities are no longer constant, varying with the
mean velocity and internal energy. Therefore, the mean flow can have a high Mach number. To investigate the
viscous and conductive properties of the model, a one-dimensional flow with a sinusoidal velocity distribution
and Couette flow were simulated, showing good agreement with the analytical solutions. The simulation of an
oblique shock impinging on a solid wall has captured the complex feature of the interaction between the shock
and boundary layer.

PACS numbgs): 47.40.Nm, 51.20td, 47.15.Cb

[. INTRODUCTION forts have been made to solve this problem. Alexaredex.
[12] attempted to decrease the sound speed to augment the
The lattice Boltzmanr(LB) method as a relatively new Mach number. Qian and Orszag3] studied the nonlinear
numerical scheme has recently achieved considerable sugéviation of the LB model in a compressible regime, and

cess in simulating fluid flows and associated transport phepresentked a3n1u;nerical sirgulation ofa sglochprofilje.l\f(antﬁnd
nomena. A variety of LB models for different physical prob- co-workers(3,14] proposed a compressible LB model for the

. . . Euler system, and successfully simulated the Sod shock-tube
lems, such.as single compopent hydrodynamics, mump.hasﬁroblem in which a membrane separates a long tube with
and ~ multicomponent fluids, magnetohydrodynamics high.pressure and high-density fluid in one side and low-

reaction-diffusion systems, flows through porous media, an‘ﬂ)ressure and low-density fluid in the other side, and the
other complex systems have been establigiddThe LB membrane blasts at initial tinje4]. Recently, we proposed a
method has demonstrated a significant potential and broq@ca”y adaptive semidiscrete LB modgl]. The particle ve-
applicability with numerous computational advantages, suclipcity set is chosen according to the fluid local velocity and
as the parallel algorithm and simplicity of programming. internal energy. The fluid velocity is no longer limited by the
There was one recent attempt to overcome the low Macharticle velocity set. Consequently, the model is suitable for
number Constraint, so that the LB method may simulate SUs wide range of Mach numbers. Simulations of the Sod
personic flows with a shock wave,3]. shock-tube problem and two-dimensional shock reflection
Historically, the LB method originated from a Boolean gemonstrated the model's capability for solving compress-
model known as lattice gas autom&t&A) [4,5]. The stan-  jple Euler flows with shocks. The Navier-Stokes equations
dard LGA models impose, for the sake of computational efyere derived by the Chapman-Enskog method. However, the
ficiency, a Boolean constraint which restricts the number oheat conduction term in the energy equation was not clearly
particles with a given velocity at a site to be zero or 1. Thefgrmulated.
local equilibrium of the mean population of particles is de- The objectives of the present paper are to establish a
scribed by the Fermi-Dirac statistics. As a result, LGA mod-modified semidiscrete adaptive LB model to recover the cor-
els suffer from statistical noise and non-Galilean invariancerect heat conduction term in the energy equation, to Study the
These difficulties have led to the development of LB models jscous term in the Navier-Stokes equations, and to improve
[6-8]. In the LB method real numbers represent the locakhe accuracy. This paper is organized as follows. Section II
ensemble-averaged particle distribution functions. A simplejescribes a LB model with adaptive particle velocities first,
Bhatnagar-Gross-KroolBGK) collision operator is applied then derives general macroscopic conservation equations
[6.,7]. Space and time are discrete as in the LGA method. Thgom the Boltzmann equations by the Chapman-Enskog
particle velocities belong to a finite set. Consequently thenethod, defines the equilibrium distribution function to ob-
macroscopic velocity is limited, and, in turn, the general LBtain the Navier-Stokes equations, and finally eliminates the
method suffers from the constraint of small Mach number. Ingiscretion errors. Section Ill is about the numerical results.
the past years, the gas-kinetic thef®y10] and the discrete-  Finally, some concluding remarks will be presented.
velocity model[11] successfully simulated the compressible
Euler equation. The finite volume method was employed to Il. SEMIDISCRETE ADAPTIVE LB MODEL
solve the Boltzmann equations. The discontinuities were
well captured. However, due to the restraint mentioned
above, the standard LB method has a great difficulty in simu- Letr be the particle “migrating velocity,” transporting a
lating compressible Euler flows at high Mach number. Ef-particle from a node to its neighbor node at a distansé

A. Basic equations
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during the discrete timAt. The migrating velocity sefr} is

discrete because the nodes of the lattice are discrete. Suppose f= nZO e"f(", (10

that the particle transports the mass momentumé, and -

energy{ to the neighbor node at a distancat, where & g =

eD,, D, is a bounded domain i3 (or in R? for two- = > e"EM, (12)
n=0

dimensional modejsandr e D;; me Dy, {e€Dy, Dy is a

bounded domain ifR. Define D="DyX D, X Dy. Obviously, . .

m, & and{ can vary continuously. I?1 the1 star?dard LB mgdel, whzr.e f(n)f (%?9 ]E:: ). depentlj ole donY and dltf) stuhccesswe

space, time, and the particle velocity are all discrete; thered'@ |_ents.. bl_ IS comg eItEey gztermf!ne y theé macro-

fore, m, & and{ must be discrete and take the values,1, SCOPICVarabieép, pv, andpkt, and verines

and 3r?, respectively. The objective of introducing such a

semidiscrete velocity LB model is to increase the accuracy of Y=2> f 7teqx,r, p,t)dn. (12

the model. roP
Let x be an arbitrary node of a latticetf(x,r,m,&{,t) is

the density distribution function for the particle with the mi- Considering relations?), (12), (10), and(9) we have

grating velocityr, moving toxtx+rAt during At, and trans- "
porting the massn, momentumé, and energy,. The con- Er Jan dyp=0, Vn=1, (13
served total mass, momentum, and energy are defined as
p=> f mf(x,r,m,&¢,tydmdgdg, (1) Y fﬂﬂdv:o- (14
r D

A vector 5 verifying Eq. (14) is called the collision invari-
V=2 f £ (xr,m, & ¢,tdmdidg, 2  ant
rep We Taylor expand the left-hand side of E§). Then, by
identifying the first order terms of, we can determiné(),

PEEZ JDZf(X,r,m,f,é,t)dmdfdQ (3)  and, considering Eq$13) and(14), we obtainF(® andF(®):
. eq
wheredé=d¢;dé,dé;. Define F(1= _TT(erq.rJr‘?;( FO,
n=[m,& 7], 4
foxrp)=f(xr,m&L 1), (5) FO— gy f r—
r D
Y=[p,pV,pE]. (6)
i i i T afea
Equations(1), (2), and(3) can be written in a compact form F— —divE f FOr 4 = div(fo4r )+ . FO)
r D 2 Y
Y= f f(x,r,p,t)dn, 7
2 | mfoormbdy (7) N
whered z=dmdéd{. o The operators div an¥ take effect on variable. The
In LB models, the Boltzmann equation is written as variablesr, & and{ are independent af. Therefore, they
f(X+rALL, pt+AD)—f(Xr, 7,1)=Q, (8)  can be treated as constant for div &Wid Up to order 1 Eq.
(11) is written as
where
aY 1
1 —=—di ffe"r - T(—— )d'
Q=——[fxr, 2~ 0, p 0], 9 at 'VZ ol YAy €T| 57 jdiv
afed
andfeqx,r, »,t) is the equilibrium distribution depending on x| divY, f f%r pdp+ >, f =~ -F(O)rndn}
the total mass, momentum, and energy. Because the discrete rJp rJp
migrating velocity sefr} is large, andyp can vary continu- +0(e?). (15)

ously, the Boltzmann equatio(8), in general, is hard to

solve. In fact, Eq(8) is only used for theoretical analysis. Thjs is the macroscopic conservation equation. It depends on
The technique for numerical simulation will be discussed inghe distribution off® If the equilibrium distribution is prop-

Sec. Il. _ N erly determined, it may become the Navier-Stokes equation.
In the following, we utilize the Chapman-Enskog expan-

sion of the solution of Eq(8) [2,15,1§ to derive the macro-

scopic conservation equations. We chodde- €T, whereT

is a reference time scale ard typical small parameter. We On a uniform lattice, let us consider the symmetric vector

are then looking for a solution of E@8) as an asymptotic set{c/,;j=1,...b,} connecting a node to its equal dis-

expansion of the forms tance neighbor nodes, whelbeg is the number of vector di-

B. Equilibrium distributions
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o 1
W:_dlvk,zy,j deCijnij‘l'GT E_T

X

. Jd
div(d i€ ,kCj oy k) + FO- N (duiCiokm Vk)} )

+0(€?), (22)

where O(€?) is the error term derived in the Chapman-
Enskog expansion, and

ik =L[Mjoics &k s okl (22

After substitutingf {7} into it, Eq. (12) becomes

Y:kEj Aok 1) ok - (23

FIG. 1. Particle velocities.

_ _ In Ref.[2], in order to obtain an arbitrary special heat ratio
rections. For a hexagonal lattice we chose-6, andv=1 ~ , we introduced the particle potential enerdy and as-
and 2. The module aofj, is c,. In the standard LB method, sumed that the total energy of a particle consists of kinetic
the constant vectory, are the particle velocities. The basic gnergy and potential energy, 6 = %EJ—ZVHD: L1(p2

idea of what we call an “adaptive LB model” is to super- +2¢/,-v+c,?)+®d. However, because of the fluctuating ki-

impose the fluid velocityv, which is approximated by netic energ;%c’z, the heat conduction term in the energy
vy (k=1,2,3) (see Fig. 1, on the symmetric veIocitycj’y. y

, ; , . ; equation could not be properly formulated. To overcome this
Letx be an arbitrary node, is the fluid velocity at this node;

I3 12 2
andv,, V,, andvy are the vectors from the nodeto the difficulty, now we replacec,” by a mean value', i.e.,
apexes of the triangle containing the velocity vectoWe o

= 1 , -
introduce the particle velocities ,« ,c;, and the fluctuating g uk25(02+ 2¢),-vt+c'?) + @, (24)
velocitiesvy (k=1,2,3):

, where
Cj k= Vit Cj - (16)
- ) ?2=l mb,d,.c’?. (25)
CjV:V+CjV’ (17) p k,v n .
Vi=V+ V. (18)  In Ref. [2], &, was chosen ag,=¢;j,. However, the

) » Navier-Stokes equation had discretion error termjs, .
In standard LB models, the particle velocities are con—rpege terms can be eliminated if a correction term is added
stant, therefore, the mean velociiye., the fluid velocity is 0 My, &, and . For comparison we describe two

limited. In the present model, the particle velocities are,qe|s: model I without correction and model Il with cor-
adapted to the mean velocity, which is then rid of the con-

' . . . rection. Model I:
straint of the particle velocities. For high speed flow the fluc-

tuating velocitiesvy is small. m} w=1, (26)
In the following, we will determine the equilibrium dis-
tribution 9. We hope the model is as simple as possible g}vk:av! (27)

under the condition that the correct macroscopic equations

(Navier-Stokes equatiopgan be obtained. We concentrate | 1 _
the particles atr=cj,,, m=m;,, =&, and {={ . §jyk=§(v2+ZCJ-’V-V+C’2)+<I>, (28)
Mk, &k, andg;, are determined b)_/ the macroscopic vari-
ablesp, v, andE. Forr=c¢;,,, we define 77} sz[m} vk!g}vk!é’} e (29)
k(X ) =14X,¢ i, 1), (19 Model II:
1 el —
and for otherr’'s we set f*{x,r,n,t)=0. We suppose m}'vk:m} k= Xj vk (30)

f5k(x, m,t) to have the form

kO 1,0 =d e 8(m—my ) (€= &j,1) (L — &),
(20

}lvkzg}vk_)(jvkva (31

| 1 .=
ivk= Ljvk ™ Xjuk E(U +c')+ |, (32

where 6(&) is the & function. §(&=0 for &#0;

Ja(§o(§dé=g(0). &(5)=0 for #0; [g({)s({)dS | o
=g(0). Equation(15) becomes W= My & i s (33
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whereD is the space dimension and

Xivk= (G, Vio)- (34

2c!?

In order to increase the accuracy it is assumed that
satisfy the equations

3
=2 b
k=1

3
pV= > PV,
k=1

(39

(36)

wherep, =% b,d,,. For a givenp andpv it can be proved
that Egs.(35) and (36) have unique non-negative solutions
for py (see Fig. 1 Equations(35) and (36) permit us to
write.

> peve=0. (37)

k

Thanks to Eq(37), the first order ofv, in the conservation
equations disappears.
Substituting ;,, and 7|, into Eq. (23) that has to be
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CI)=[1—§()/—1) e

In order to ensure the positivity af, andd,, c; andc2
are required to satlsf¢12<D(y 1)e<c§2. However, c;
andc, are not completely determined. In practicgis set to
be the integer part of/D(y—1)e, andc,=c;+1. For a
two-dimensional Boltzmann model without particle potential
energy the special heat ratipis 2 [11]. From the relation
above it can be seen thdt=0 wheny=2, agreeing with
the standard LB models. Whenis small,c; may be zero.
The correction terms in Eq$30), (31), and(32) have to be
modified ifc;=0. In this casey;, in Eq.(34) is defined as

d;+dj
dz

D

o~ 0.

Xik=0, Xjax= —(Clrv), if c1=

(42

Now, the equilibrium is completely determined. Consid-
ering relationg16), (17), (18), (36), and(37), the continuity,
momentum and energy equations are derived for models |
and Il after substitutingg}, and 17, into Eq. (21):

ap . 2
—¢ Fdiv(pv)=div(Bo) + O(€?), (43

satisfied, one has the same equations for these two models:

(39)

3
PZE bvdvk:E Pk »
k,v k=1

1 1
PE=Zpv?+ 2 5b,duci?+p®, (39

The second component of E@3) is automatically satisfied
as long adl, satisfies Eq(38) which is identical to Eq(35).
This expression fopE is the same as that of RgR2], al-
though the vectouy, , is different. We introduce the density
portion &= py/p, and supposd,, to have the form

de: akd,,, (40)
whered,=2,d,, will be determined by the density and the
pressurgor internal energy

A perfect gas with a specific heat ratjosatisfiesp=(y
—1)pe, wheree=E—3v? is the internal energy. The pres-

surep has the form

p=2 b dvD 2 (41

In the case where, have two levels =1 and 2) one
can determinal,,d,, and® by Egs.(35), (39 and(41):

—D(y—1)e

dlzpf7
bi(cy®—c1?)

D(y—1)e—c;?

2T P T o
by(cy?—ci?)

dpv
P ——+div(pw)+Vp

=div{u[VV+(VV)T—(y—1)divvl4]+B,}

+0(€?), (44)
JdpE
7+dlv(pv+pEv)

=div{uv-[Vv+(Vv)T—(y—1)divvi4]}
+div{kVe—(y—1)eVk+B,}+0(€?),
(45
where
1 1
=K:5T(T— E)E b d,,ac’yz. (46)

n andk are the viscosity and heat conductivity, respectively;
€T is the time step; an®(€?), the error terms derived in the
Chapman-Enskog expansion, are of higher order than the
viscous term and heat conduction term in Edgl) and (45)

(see Eq(46)). For model I,

1
Bo=eT< ™5 divY, b,d,viv,
k,v

Bl: €T

1
T— 5) div> b,d i vVevy,
k,v

1 2+_/2 +d vV
2(v c'?) ViV

1
B,= eT( — 5) div >, b,d,
k,v
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TABLE I. Comparison between measured viscositiesfor model | andv,, for model Il) and analytical
viscosity (v,) for differente on 200<4 lattice. Numbers in brackets represent powers of 10.

e 0.5 1.0 1.5 2.0 2.5 3.0

va 9.9691-5] 1.993§-4] 2.990T-4] 3.987¢—4] 4.9845-4] 5.9815—4]
n 1.1480-4] 2.1406-4] 3.2634—-4] 4.1933-4] 5.152§-4] 6.1124—4]
w 1.0063—4] 1.9997-4] 3.0715-4] 3.9802—-4] 4.9695-4] 5.9610—4]
error | 15.15% 7.36% 9.12% 5.16% 3.38% 2.19%

error |l 0.942% 0.296% 2.70% 0.186% 0.301% 0.343%

and for model Il we have mentum, and energy transported by the particles, and there is
no need to store the particle distributibnDue to the fact
Bo=B1=B,=0 that f®4=0 for r#¢;,,, the mass, momentum, and energy

transported by the particles from a nodexe c; At are

due to the relation
components of the vector

D
E, dvkcj kaj vk ,2(ij'vk) nfe%X,Cj Vk,ﬂ,t)dﬂ: 7]] vkdvk' (49)
K,v,j 2c D

14

The following simulations are carried out under the condi-
tion =1 andy=1.4.

jv-iv

D
- — (¢ ¢ +c¢ ' Y
_kEV’j dezc;Z(C Cl ¢ Vit Vi, Vivi) (¢, Vi)

A. Viscosity comparison of the two models
= b,d,wWLvL. (47) “osiy compa , ,
kv Let us consider a special analytical solution of E4y).

SupposeVp=0, u=0, andv to be a function ox. When

In Eq. (45) the first term and the second term on thethe variation of the viscosityx is neglected, Eq(44) be-

right-hand side correspond, respectively to the dissipatio

: . . comes
and the heat conduction. Since we replaced the fluctuating
kinetic energyc.? in the collision-invariant vector by the o 920
mean valuec’?, we obtain the correct heat conduction term AU (50)

div(xVe), which was in the formA= ,b,d,[1/(2D)]c.* in

Ref.[2], whereA is the Laplace operator. For modelBg,  wherev= u/p. Equation(50) admits the following analytical
By, and B, can be regarded as discretion errors; and folspjution for the sinusoidal initial condition:

model Il these errors are eliminated. Then E@S), (44),

and (45) become Navier-Stokes equations. v(X,t)=bexp —vt)sin(2wx/L). (51

The simulation was carried out on a hexagonal lattice of
200X 4 nodes, ant is set to be 0.3. From solutigi®1), we
When =1 the Boltzmann equatio(8) becomes have

Ill. NUMERICAL SIMULATIONS

f(x+rAt,r,pt+At)=14x,r, ). (48 In[v(x,t)/v(x,0)]= — vt. (52

Sincef® depends only on fluid density, velocity, and inter- When the simulation value of [la(x,t)/v(x,0)] is plotted ver-

nal energy, the particle distributionat t+ At is also deter- sust, a straight line is anticipated, and the slope-ig. In
mined by them, independent of the particle distributfomt  this way, the viscosity of the models can be measured. The
timet. In this way, the need for computer memory and com-measured viscosities/( for model | andy), for model II) are
putation time is considerably reduced. In fact, during thecompared with analyticat, [calculated by Eq(46)] in Table
numerical simulations, what we care about are the mass, mao-for different e’s. Model 1l agrees well with the analytical

03

02 model Il

01 FIG. 2. (a) Distribution of v for e=0.5 att

=0, 3000, 6000, and 9000 on a lattice: 200
(in x andy directions. The dashed lines are for
model | and the solid lines are for model (b).
Infv(t)/v(0)] vst atx=L/4.

0.1

0.2

-0.3
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FIG. 3. (a) Distribution of v for e=2.0 att
=0, 800, 1600, and 2400. The dashed lines are
for model |, and the solid lines are for model Il.
(b) In[v(t)/v(0)] vst atx=L/4.

1 1 1
0 500 1000 1500 2000
t

values. Model | has a significant error from the analyticalwhereT, andT; are the temperatures at the bottom and top
values, and, the smallez is, the larger the error is. The boundaries, respectively; is the distance from the bottom
reason for this is that the viscosity decreases witk; there-  boundary;H is the height of the channel; BiPrx Ec is the
fore, whene is small, the discretion errd, becomes more Brinkman number; Pr uc,/« is the Prandtl number; and
important[see Eq.(44)]. Ec=U2/cp(Tl—To) is the Eckert number. The temperature

Figure 2a) shows the profiles of (for e=0.5) att=0, is defined bye=c,T, andc, is set to 1.
3000, 6000, and 9000. The dashed lines are for model | and We used the parameteyg,=1, po=0.25/1.4, andT,
the solid lines are for model II. In Fig.(B) the values of =o=Po/[(y=1)po]=0.446, and the corresponding sound
In[v(xt)/v(x,0)] are plotted versus at x=L/4 for the two ~ SPeeds=yp/p=0.5. The domain of computation includes
models. They are approximately straight lines. The corre8>%32 nodes(in x andy directions and is normalized to 1
sponding viscosity v is 1.1480—4] for model | and ;rlez.cﬁjrﬁ)enodlcal boundary condition is imposed in tke
1.0063—4] for model II. The analyticab is 9.9691—5]. cH .

Figure 3a) shows the profiles o (for e=2.0) att=0, Figure 4 shows the results faf, =T, (i.e., Br=0), U

t=800, t=1600, andt=2400. The dashed lines are for i(())%&lo.g’nc?ng) 1F:5 ur((ai.(eé)’ comMg(r:gs th:L;\rSr%eerrical '\gﬁd
model | and the solid lines are for model II. Figur¢bg _ 7. - 19 P

shows the profiles of [p(xt)/v(x0)]. The difference be- analytical solutions of the normalized temperature. The solid

. : line in Fig. 4a) is the analytical solution given by E¢4).
Feltvrzeérr] the two models are smaller than Fig. 2, bec&use  Thg nymerical results agree well with analytical solutions.

. , Figure 4b) shows the corresponding velocity profiles fdr
This example demonstrates that model Il is more accurate. g o5 0’5 and 1.5. which are almost straight lines as are

than model I. In the following all the simulations have beenine analytical solutions.

carried out by model II. Figure 5 shows the results foF,;=T,+0.05 andU
=0.25, 0.5, 0.707, and 1, ie., Mach number Ma
B. Couette flow =0.5, 1, 1.414, and 2, and Brinkman number=8r.25, 5,
Couette flow provides a good test of the ability of a LB th, and tZO. Fro;‘ﬁl Fig. (&) we (I:f‘n _fhe(;zhthat tTet_nolrma}Ili_ed
thermal model to describe viscous heat dissipafibrn18. emperature profiies agree well wi € analytical solutions

; : . the solid line$ given by Eq.(53). Figure §b) shows the
With the bottom wall fixed and the top boundary moving at( : . . o
the speed ofJ, the velocity profile is a straight line and the corresponding velocity profiles fdd=0.25, 0.5, 0.707, and

) o . . 1, which are again almost straight lines. This simulation was
temperature profile satisfies the following relatidiy, 1§ also carried out for model | and the similar results were

when the variation of the viscosity and heat conductivity Capbtained in Ref[25].

be neglected: The standard LB model can simulate Couette flow at very
T T Br low Mach number 0.00¢0.14[17]. In order to increase the
T, #Ty: o _ Z+_ Y 1— Y 53 Mach number, Cheet al.[17] proposed a complex “higher
l;t 0- ’ ( ) . .
Ti—Tp H 2 H order model” and obtained a good solution for Mach num-

H
U2 bers up toM =0.5. Figures 4 and 5 show that our solutions
_T . e MUY Y are in good agreement with the analytical solutions, even
T1=To: T—To H (1 H)’ (B4 when the flow is supersonic.

08

FIG. 4. (a) Energy profiles in Couette flow
under different Mach numbers foF,=T,. The
solid line is the analytical solution(b) Corre-
05f- ) ) sponding velocity profiles folJ=0.25, 0.5, and
o 1.5.

o
[
T

©
~
T

normalized e

0.2
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3F ! .
1 . Ma=2 o
Br=20, Ma=2 . Ma=1.414 o
0.75f . Ma=1 o
. Ma=0.5 o . ) .
o 25 . . FIG. 5. (a) Energy profiles in Couette flow
3 -® . .
E 10 Ma=1 413 - 05k . . under different Brinkman numbers foF;—T,
© = =1 . 5 . . . . .
£ e o =0.05. The solid lines are the analytical solu-
- . -l . . . .
<L ot et et tions. (b) Corresponding velocity profiles fdd
* * "
025 =0.25, 0.5, 0.707, and 1.
| Br=1.25, Ma=0.5 R UPPPTL L
. @ gitiilees ®
) ~ 1 1 1 04t At 1 1 1
025 05 0.75 1 025 05 0.75 1
y y

In the last simulation the temperature difference between The bottom boundary is a reflecting wabee Fig. 7,
the two plates is chosen quite smal{=T,—T,=0.05) for  corresponding to slip condition. Initially, the solution of the
two purposes: one is to obtain a higher Brinkman numberentire domain is set to be that at the left bounddrg]. The
and the other is to avoid the great variation in the viscositycorresponding Mach number is 2.9. Figurgg)8and &b)
and heat conductivity that results from the variation in tem-show the pressure and density contours. The clear shock re-
perature, so that the simulation can be compared with thllection on the wall agrees well with the exact solution. It is
analytical solutions. Figure 6 shows the velocity profile with Noted that the shocks are much finer than those of our pre-
U=0.5 for different temperature differencesT=0.05, 1, Vious results2] (280x80 grids and than those of the ki-
and 2. The deviations from the linear profile are visible forN€tic flux vector splitting methods (8020 [20] and 60

_ P X 20[21] grids) because the pressure is smallibiereforeu
T=1 2 h . OGN
d and 2, due to the great variation in temperature and x are smaller and the lattice is finer (360140). The

main purpose of this simulation is to compare the shock
reflection on a slip wall with that on a nonslip wall presented

. o in the next simulation.
If we regard the viscous terms and the diffusion terms of

the right-hand sides of Eq$44) and (45) as the discretion D. Interaction between shock and boundary layer
error, Eqs.(43), (44), and (45 become an inviscid Euler
system. In fact, the viscosity and diffusivity are of order (
—1)12/At, wherel is the unit length of the lattice aniit is
the unit time. We have performed a 29° shock reflection fo

C. Shock reflection on an invisid wall

In this example, a nonslip condition on the bottom wall
was set. All the other conditions are the same as those in Sec.
Il C, including the lattice condition, initial conditions, and
'houndary conditions on entrance, exit, and upper wall. On

7=1andy=14. o he bottom wall, the following conditions were imposed: a
The computational domain is a rectangle of length 3 an onslip wall,u=0, v=0; a zero pressure gradient jndi-

height 1 divided into 368 140 nodes. Dirichlet conditions rection,dp/dy=0; and a constant temperatige const. The

are imposed on the left and upper boundaries, resF’ect'Velydensity was then determined by the state equation for perfect

U, =(1.0, 0.5¢2.9, 0.0, 0.25/1. gas.
(p,u,v,P)|0y,y=( A Figures 9a), 9(b), 9(c), and 9d) display the pressure,

density contoury contour, and streamlines. Figureg)@and

_ _ 9(d) clearly show the boundary layer structure. Because of
=(1. 7, 0.%2.61934 .
(p,0,P)] 2 =(1.69997, 0.52.61934, ~0.5 the great adverse pressure gradient crossing the shock, the
X 0.50633, 0.2%1.52819. boundary layer separation occurs at abosatl.6, where the

shock reaches the boundary layer; thereafter the boundary
layer reattaches, corresponding to the curved streamlines

0.5

a which are convex in the direction of the wall. From Figa)P
i 4T=0.05 a we can see that the leading edge of the bottom wall disturbs
04F t _____ dT=1 57 the uniform inlet flow, and induces a shock which turns
————————— dT=2 L7 slightly to the right after traversing the oblique shock. The
0ak /.,,’/' impinging oblique shock is similar to that in Sec. Il C before
o 8 it reaches the boundary layer. However, the reflected pattern
| / s contains a system of compression and expansion waves, after
02f 7 2 which another fan of compression waves is formed. The
57 boundary thickness increases ahead of the point of arrival of
o1k // the oblique shock. The boundary layer exhibits a large local
At Vs
0 i ol I "
0 0.25 oys 0.75 1

FIG. 6. Velocity profiles in Couette flow with)=0.5 for dif-
ferent temperature difference$T=0.05, 1, and 2. FIG. 7. Particle reflection on a slip wall.
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>0.5 >0.5
%0
pressure
1 1
=05 >0.5
%
density
FIG. 8. Shock reflection on a slip wall. Grid size: 36040. 17

Pressurda) and density(b) contours at=1000.

>0.5

thickening which leads to a separation. This situation agrees
with that described in Ref22].

IV. CONCLUSION

We have proposed an improved adaptive thermal LB 1
model for viscous compressible flows. The proper heat con- ¢ g
duction term in the energy equation is restored, and the dis:
cretion error is eliminated. This model can handle flows over>
a wide range of Mach numbers and capture shock jumps 94
The adaptive nature of the particle velocities makes a link 0.2

[ARAE SARRY LEURY LRNRE LRRY

between the LB model and the discrete-velocity mof2H. ] i G IS S S S 3
The BGK Boltzmann equation is the basic equation. The X
Navier-Stokes equations were derived by the Chapman: stream lines

Enskog method. One-dimensional simulations for sinusoidal

velocity distributions were performed in order to check the FIG. 9. Interaction between shock and boundary layer on non-
viscosity. The velocity distributions were compared with theSlip wall. (&) Pressure(b) density, (c) u contours, andd) stream-
analytical solution, and the measured viscosities were conlines att=1000. Grid size: 368 140.

pared with the theoretical values. Because of the absence of

a discretion error, model Il agrees better with the analyticaly,gqe| is as efficient as the standard LB models and con-
solution than model I. The numerical results for the Couett%umes less Computer memory, because we have taken advan-
flow agrees well with analytical solutions even when thetage of the conditiorr=1 in the numerical simulations; oth-
flow is supersonic. In the simulation for the reflection of anerwise, the simulations would require enormous computer
oblique shock impinging on a solid wall, the complex struc-memory and time.

ture of the shock wave, resulting from the interaction be-
tween the shock and the boundary layer, was well captured.
The total computation time is proportional to the total num-
ber of nodes. This model retains most of the advantages of The author thanks D. Bernardin, O. Sero-Guillaume, S.
the standard lattice Boltzmann method, such as parallelisrt@hen, H. Chen, D. Doolen, and S. Succi for helpful discus-
of the method, and ease of programming. Another advantagsons. This work was supported by the National Natural Sci-
of this model is that the boundary condition imposed for theence Foundation of ChingdGrant Nos. 19672030 and
macroscopic variables can be easily realized because the cd4l9972037 and by the Scientific Research Foundation for
culation at each iteration starts by the macroscopic variableReturned Overseas Chinese Scholars, State Education Min-
independent of the details of particle distributions. Theistry.
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